Earlier publications
Inglis, D.O., and Johnson, A.D. (2002). Ash1 protein, an asymmetrically localized transcriptional regulator, controls filamentous growth and virulence of Candida albicans. Mol. Cell. Biol. 22: 8669-8680.
Lockhart, S.R., Pujol, C., Daniels, K.J., Miller, M.G., Johnson, A.D., Pfaller, M.A., and Soll, D.R. (2002). In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 162:737-745.
Miller, M.G., and Johnson, A.D. (2002). White-opaque switching in Candida albicans is controlled by mating-type (MTL) locus homeodomain proteins and allows efficient mating. Cell 110:293-302.
Braun, B.R., Kadosh, D., and Johnson, A.D. (2001). NRG1, a repressor of filamentous growth in C. albicans, is down-regulated during filament induction. EMBO J. 20:4753-4761.
Uhl, M.A., and Johnson, A.D. (2001). Development of Streptococcus thermophilus lacZ as a reporter gene for Candida albicans. Microbiology 147:1189-1195.
Kadosh, D., and Johnson, A.D. (2001). Rfg1, a homolog of the S. cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in C. albicans. Mol. Cell Biol. 21:2496-2505.
Braun, B.R., Head S.W., Wang, M.S., and Johnson, A.D. (2000). Identification and characterization of TUP1 – regulated genes in Candida albicans. Genetics 156:31-44.
Smith, R.L. and Johnson, A.D. (2000). Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. TIBS 25:325-330.
Hull, C.M, Raisner, R.M., and Johnson, A.D. (2000). Evidence for mating of the "asexual" yeast Candida albicans in a mammalian host. Science 289:307-310.
Sprague, E.R., Redd, J.M., Johnson, A.D. and Wolberger, C. (2000). Structure of the C-terminal domain of Tup1, a corepressor of transcription in yeast. EMBO J. 19:3016-3027.
Braun, B.R. and Johnson, A.D. (2000). TUP1, CPH1 and EFG1 make independent contributions to filamentation Candida albicans. Genetics 155:57-67.
Tran, H.G., Steger, D.J. Iyer, V.R., and Johnson, A.D. (2000). The chromo domain protein Chd1p from budding yeast is a chromatin remodeling factor. EMBO J. 19:2323-2331.
Smith, RL., and Johnson, A.D. (2000). A sequence resembling a peroxisomal targeting sequence directs the interaction between the tetratricopeptide repeats of Ssn6 and the homeodomain of α2. Proc. Natl. Acad. Sci. USA 97:3901-3906.
Hull, C.M., and Johnson, A.D. (1999). Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285:1271-1275.
Perez-Martin, J., Uria, J.A., and Johnson, A.D. (1999). Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J. 18:2580-2592.
Straight, A.F., Shou, W., Dowd, G.J., Turck, C.W., Deshaies, R.J., Johnson, A.D., and Moazed, D. (1999). Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 97:245-256.
Stark, M.R., Escher, D., and Johnson, A.D. (1999). A trans-acting peptide activates the yeast a1 repressor by raising its DNA-binding affinity. EMBO J. 18:1621-1629.
Pérez-Martín, J. and Johnson, A.D. (1998). The C-terminal domain of Sin1 interacts with the SWI/SNF complex in yeast. Mol. Cell. Biol. 18:4157-4164.
Pérez-Martín, J. and Johnson, A.D. (1998). Mutations in chromatin components suppress a defect of GCN5 protein in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:1049-1054.
Wahi, M., Komachi, K., and Johnson, A.D. (1998). Gene regulation by the yeast Ssn6-Tup1 corepressor. Cold Spring Harbor Symposia on Quantitative Biology 63:447-457.
Komachi, K. and Johnson, A.D. (1997). Residues in the WD repeats of Tup1 required for interaction with α2. Mol. Cell. Biol. 17:6023-6028.
Braun, B.R. and Johnson, A.D. (1997). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105-109.
Redd, M.J., Arnaud, M.B. and Johnson A.D. (1997). A complex composed of Tup1 and Ssn6 represses transcription in vitro. J. Biol. Chem. 272:11193-11197.
Moazed, D., Kistler, A., Axelrod, A., Rine, J. and Johnson, A.D. (1997). Silent information regulator protein complexes in Saccharomyces cerevisiae: A SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc. Natl. Acad. Sci. USA 94:2186-2191.
Moazed, D. and Johnson, A.D. (1996). A deubiquitinating enzyme interacts with SIR4 and regulates silencing in S. cerevisiae. Cell 86:667-677.
Redd, M.J., Stark, M.R. and Johnson, A.D. (1996). Accessibility of alpha2-repressed promoters to the activator Gal4. Mol. Cell. Biol. 16:2865-2869.
Smith, R.L., Redd, M.J. and Johnson, A.D. (1995). The tetratricopeptide repeats of Ssn6 interact with the homeodomain of a2. Genes Dev. 9:2903-2910.
Johnson, A.D. (1995). Molecular mechanisms of cell-type determination in budding yeast. Curr. Opin. Genet. Dev. 5:552-558.
Li, T., Stark, M.R., Johnson, A.D. and Wolberger, C. (1995). Crystal structure of the MATa1/MATα2 homeodomain heterodimer bound to DNA. Science 270:262-269.
Johnson, A.D. (1995). The price of repression. Cell 81:655-658.
Forbes, D. and Johnson, A.D. (1995). Nucleus and Gene Expression. Editorial Overview, Curr. Op. Cell Biol. 7:299-300.
Smith, D.L., Desai, A.B., and Johnson, A.D. (1995). DNA bending by the a1 and α2 homeodomain proteins from yeast. Nuc. Acids Res. 23:1239-1243.
Li, T., Stark, M.R., Johnson, A.D., and Wolberger, C. (1995). Crystallization and preliminary x-ray diffraction studies of an a1/α2/DNA ternary complex. Proteins 21:161-164.
Wahi, M. and Johnson, A.D. (1995). Identification of genes required for α2 repression in Saccharomyces cerevisiae. Genetics 140:79-90.
Vershon, A.K., Jin, Y., and Johnson, A.D. (1995). A homeodomain protein lacking specific side chains of Helix3 can still bind DNA and direct transcriptional repression. Genes Dev. 9:182-192.
Komachi, K., Redd, M.J., and Johnson, A.D. (1994). The WD repeats of Tup1 interact with the homeo domain protein α2. Genes Dev. 8:2857-2867.
Johnson, A.D. (1994). Genetic variability of microorganisms. Chapter 3: Medical Microbiology by Baron, E.J. et al., Wiley-Liss, New York. pp. 39-60.
Stark, M.R., and Johnson, A.D. (1994). Interaction between two homeodomain proteins is specified by a short C-terminal tail. Nature 371:429-432.
Phillips, C.L., Stark, M.R., Johnson, A.D., and Dahlquist, F.W. (1994). Heterodimerization of the yeast homeodomain transcriptional regulators α2 and a1 induces an interfacial helix in α2. Biochemistry 33:9294-9302.
Herschbach, B.M., Arnaud, M.B., and Johnson, A.D. (1994). Transcriptional repression directed by the yeast α2 protein in vitro. Nature 370:309-311.
Smith, D.L. and Johnson, A.D. (1994). Operator-Constitutive Mutations in a DNA Sequence Recognized by a Yeast Homeodomain. EMBO J. 13:2378-2387.
Goutte, C. and Johnson, A.D. (1994). Recognition of a DNA operator by a dimer composed of two different homeodomain proteins. EMBO J. 13:1434-1442.
Mak, A. and Johnson, A.D. (1993). The carboxy-terminal tail of the homeo domain protein a2 is required for function with a second homeodomain protein. Genes Dev. 7:1862-1870.
Goutte, C. and Johnson, A.D. (1993). Yeast a1 and α2 homeodomain proteins form a DNA-binding activity with properties distinct from those of either protein. J. Mol. Biol. 233:359-371.
Herschbach, B.M. and Johnson, A.D. (1993). The yeast α2 protein can repress transcription by RNA polymerases I and II, but not III. Mol. Cell. Biol. 13:4029-4038.
Herschbach, B.M. and Johnson, A.D. (1993). Transcriptional repression in eukaryotes. Ann. Rev. Cell Biol. 9:479-509.
Hollingsworth, N.M. and Johnson, A.D. (1993). A conditional allele of Saccharomyces cerevisiae HOP1 gene is suppressed by overexpression of two other meiosis-specific genes: RED1 and REC104. Genetics 133:785-797.
Vershon, A.K. and Johnson, A.D. (1993). A short, disordered protein region mediates interactions between the homeodomain of the yeast α2 protein and the MCM1 protein. Cell 72:105-112.
Johnson, A.D. (1992). A combinatorial regulatory circuit in budding yeast. In: Transcriptional Regulation, eds. S.L. McKnight and K.R. Yamamoto. Cold Spring Harbor Press, pp. 975-1006.
Vershon, A.K., Hollingsworth, N.M., and Johnson, A.D. (1992). Meiotic induction of the yeast HOP1 gene is controlled by positive and negative regulatory sites. Mol. Cell. Biol. 12:3706-3714.
Keleher, C.A., Redd, M.J., Schultz, J., Carlson, M., and Johnson, A.D. (1992). SSN6/TUP1 is a general repressor of transcription in yeast. Cell 68:709-719.
Smith, D. and Johnson, A.D. (1992). A molecular mechanism for combinatorial control in yeast: MCM1 protein sets the spacing and orientation of the homeodomains of an α2 dimer. Cell 68:133-142.
Wolberger, C., Vershon, A.K., Liu, B., Johnson, A.D., and Pabo, C.O. (1991). Crystal structure of a MAT α2 homeodomain-operator complex: Implications for a general model of homeodomain-DNA interactions. Cell 67:517-528.
Phillips, C.L, Vershon, A.K., Johnson, A.D., and Dahlquist, F.W. (1991). Secondary Structure of the Homeodomain of yeast α2 repressor determined by NMR spectroscopy. Genes Dev. 5:764-772.
Wolberger, C., Pabo, C., Vershon, D., and Johnson, A.D., (1991). Crystallization and preliminary X-ray diffraction studies of a MATα2-DNA complex. J. Mol. Biol. 217:11-13.
Keleher, C., Passmore, S., and Johnson, A.D. (1989). Yeast repressor α2 binds cooperatively with yeast protein Mcml. Mol. Cell. Biol. 9:5228-5230.
Sauer, R.T., Smith, D.L., and Johnson, A.D. (1988). Flexibility of the yeast α2 repressor enables it to occupy the ends of its operator, leaving the center free. Genes Dev. 2:807-816.
Keleher, C., Goutte, C., and Johnson, A.D. (1988). The yeast cell-type specific repressor α2 acts cooperatively with a non-cell-type specific protein. Cell 53:927-936.
Goutte, C., and Johnson, A.D. (1988). a1 protein alters the DNA-binding specificity of α2 repressor. Cell 52:875-882.
Hall, M.N., and Johnson, A.D. (1987). Homeodomain of the yeast repressor α2 is a sequence-specific DNA-binding domain but is not sufficient for repression. Science 237:1007-1012.
Johnson, A.D., and Herskowitz, I. (1985). A repressor (MATα2 Product) and its operator control a set of cell-type specific genes in yeast. Cell 41:237-247.
Hawley, D.K., Johnson, A.D., and McClure, W.R. (1985). Functional and physical characterization of transcription initiation complexes in the bacteriophage lambda OR region. J. Biol. Chem. 260:8618-8626.
Ptashne, M., Johnson, A.D., and Pabo, C.O. (1982). A genetic switch in a bacterial virus. Scientific American 247:128-140.
Ackers, G.K., Johnson, A.D., and Shea, M.A. (1982). Quantitative model for gene regulation by the lambda phage repressor. Proc. Natl. Acad. Sci. USA 79:1129-1133.
Johnson, A.D., Poteete, A.R., Lauer, G.L., Sauer, R.T., Ackers, G.K., and Ptashne, M. (1981). Lambda repressor and cro—components of an efficient molecular switch. Nature 294:217-223.
Ptashne, M., Jeffery, A., Johnson, A.D., Maurer, R., Meyer, B.J., Pabo, C.O., Roberts, T.M., and Sauer, R.T. (1980). How the lambda repressor and cro work. Cell 19:1-11.
Johnson, A.D., Pabo, C.O., and Sauer, R.T. (1980). Bacteriophage lambda repressor and cro protein: Interactions with operator DNA. Methods Enzymol. 65:839-856.
Johnson, A.D., Meyer, B.J., and Ptashne, M. (1979). Interactions between DNA-bound repressors govern regulation by the lambda phage repressor. Proc. Natl. Acad. Sci. USA 76:5061-5065.
Johnson, A.D., Meyer, B.J., and Ptashne, M. (1978). Mechanism of action of the cro protein of bacteriophage lambda. Proc. Natl. Acad. Sci. USA 75:1783-1787.