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Protein-coding changes preceded cis-regulatory gains
in a newly evolved transcription circuit
Candace S. Britton1,2, Trevor R. Sorrells1,2*, Alexander D. Johnson1†

Changes in both the coding sequence of transcriptional regulators and in the cis-regulatory
sequences recognized by these regulators have been implicated in the evolution of
transcriptional circuits. However, little is known about how they evolved in concert. We
describe an evolutionary pathway in fungi where a new transcriptional circuit (a-specific
gene repression by the homeodomain protein Mata2) evolved by coding changes in this
ancient regulator, followed millions of years later by cis-regulatory sequence changes
in the genes of its future regulon. By analyzing a group of species that has acquired the
coding changes but not the cis-regulatory sites, we show that the coding changes became
necessary for the regulator’s deeply conserved function, thereby poising the regulator to
jump-start formation of the new circuit.

C
hanges in transcriptional circuits over
evolutionary time are an important
source of organismal novelty. Such cir-
cuits are typically composed of one or
more transcriptional regulators (sequence-

specific DNA binding proteins) and their di-
rect target genes, which contain cis-regulatory
sequences recognized by the regulators. Al-
though changes in cis-regulatory sequences
are often stressed as sources of novelty that
avoid extensive pleiotropy, it is clear that

coding changes in the transcriptional regu-
latory proteins are also of key importance
(1–6). Some well-documented changes in tran-
scriptional circuitry require concerted changes
in both elements (7, 8). Although such con-
certed changes are likely to be widespread, we
know little about how they occur.
In this work, we study a case in the fungal

lineagewhere gains in cis-regulatory sequences
and coding changes in the transcriptional reg-
ulator were both required for a new circuit to

have evolved. Specifically, we addressed which
came first: the changes in the regulatory pro-
tein or the changes in the cis-regulatory se-
quences of its 5 to 10 target genes. The system
we analyzed consists of an ancient regulator,
the homeodomain protein Mata2, and the
changes—both in the protein itself and in the
regulatory regions of the genes it controls—that
occurred across the Saccharomycotina clade of
fungi, which spans roughly 300 million years.
[In terms of protein diversity, this represents
roughly the range between humans and sea
sponges (9)]. Throughout this time, Mata2
has maintained its ancient function: It binds
cooperatively to DNA with a second homeo-
domain protein, Mata1, to repress a group
of genes called the haploid-specific genes
(Fig. 1). More recently, Mata2 formed an
additional circuit, which is present in only a
subset of the Saccharomycotina: It binds
DNA cooperatively with the MADS box pro-
teinMcm1 to repress the a-specific genes (Fig.
1). Before this time, the a-specific genes were
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Fig. 1. Cell type–specific gene expression in the Saccharomycotina yeast.
(A) Across the Saccharomycotina clade, a and a cells each express a set of
genes specific to that cell type (a- and a-specific genes, or asgs and asgs,
respectively), as well as a shared set of haploid-specific genes (hsgs). a and a
cells can mate to form a/a cells, which do not express the a-, a-, or haploid-
specific genes (22). Wavy arrows represent active transcription. (B) The
mechanism underlying the expression of a-specific genes is different among

species. In the last common ancestor of the Saccharomycotina yeast (see circled
A in the figure), transcription of the a-specific genes was activated by Mata2,
a protein produced only in a cells, which binds directly to the regulatory region of
each a-specific gene (10, 23). Much later in evolutionary time (see circled E in
the figure), repression of the a-specific genes by direct binding by Mata2 evolved.
Still later, the Mata2-positive form of control was lost in some species (including
S. cerevisiae), leaving only the Mata2-negative form. mya, million years ago.
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regulated by a different mechanism—positive
control by the HMG-domain protein Mata2
(10, 11).
The switch between the two mechanisms of

controlling the a-specific genes occurred some-
time before the divergence of Saccharomyces
cerevisiae and Kluyveromyces lactis (formally
known as the Saccharomycetaceae, here called
the S. cerevisiae clade) but after the divergence
of this clade and that containing Candida
albicans and Pichia membrifaciens (formally
known as the Pichiaceae and Debaryomece-
taceae, here called the C. albicans clade) (Fig.
1B). Three events must have occurred for the
newer (repression) scheme to have evolved:
(i) Mata2 acquired the ability to contact the
Tup1-Ssn6 co-repressor, bringing it to DNA
to carry out the repression function; (ii) Mata2
acquired the ability to bind to DNA coopera-
tively (through a direct protein-protein con-
tact) with Mcm1; and (iii) the a-specific genes
(numbering between 5 and 10, depending on
the species) each acquired a new cis-regulatory
site for theMata2-Mcm1 combination (Fig. 1B).

To determine the order of these events,
we studied Mata2 and the regulation of the
a-specific genes in a clade that branched
from the ancestor before the occurrences of
all three of these events. We reasoned that
this group of species might have acquired
some, but not all, of the changes needed to
form the new circuit, and it therefore might
provide clues to the evolutionary history. This
approach was made possible by the genome
sequencing of a monophyletic group of spe-
cies that branches before the last common
ancestor of the S. cerevisiae clade (formal-
ly known as the Phaffomycetaceae) (Fig. 1B)
(12, 13).We chose the speciesWickerhamomyces
anomalus, and we were able to optimize
relatively simple procedures to alter it ge-
netically (14).
We examined theW. anomalusMata2 pro-

tein sequence to determine whether it is
more similar to the ancestral (represented by
C. albicans) or the derived (represented by
S. cerevisiae) form of Mata2. Alignment of
the Mata2 coding sequences across many

species indicated that, of the five functional
regions described for the S. cerevisiae protein
(Fig. 2A and fig. S1), theW. anomalus protein
shares all of them. In particular, it has a
similar Tup1-interacting region (region 1, Fig.
2A) and Mcm1-interacting region (region 3,
Fig. 2A); these regions are missing in out-
group proteins and are needed to repress
the a-specific genes in S. cerevisiae (11, 15). By
swapping theseW. anomalus regions into the
S. cerevisiae protein, we confirmed that they
are functional in repressing the a-specific genes
(Fig. 2B). In the course of these experiments,
we found that the homeodomain of the
W. anomalus protein contained mutations
that prevented its binding to the a-specific
gene cis-regulatory sequence in S. cerevisiae,
a derived change within this clade alone (Fig.
2B and fig. S1). Similar results were obtained
with the Mata2 protein from two additional
species that branch with W. anomalus, in-
dicating that these two conclusions—that
W. anomalus clade Mata2 bears functional
protein-protein interactions but cannot bind
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Fig. 2. W. anomalus
Mata2 has func-
tional Tup1- and
Mcm1-interacting
regions but does not
repress the
a-specific genes.
(A) The five modules
of the S. cerevisiae
Mata2 protein. Struc-
tural domains are
shown as globular, and
unstructured regions
are shown as wavy
lines. (B) Expression
of an a-specific
gene reporter in
the presence of
S. cerevisiae (S. cer)
Mata2 (purple),
W. anomalus (W. ano)
Mata2 (green), and
hybrid proteins (purple
and green). Means
and SDs of three
independent genetic
isolates, grown and
tested in parallel, are
shown. GFP, green
fluorescent protein.
(C) In W. anomalus,
Mata2, but not Mata2,
is required for a cells to mate (see supplementary text for details). (D) mRNA
sequencing (mRNA-seq) (tpm, transcripts per million) of wild-type W. anomalus
a cells (MATa) compared with a cells with MATa2 deleted (MATa2 mata2-D).
a-specific genes STE2, AXL1, ASG7, BAR1, STE6, and MATa2 are shown in
green. Expression of MATa2 and the marker used to delete it (Nat) are shown
in pink and opaque black, respectively. Data from independent replicates are

given in fig. S3. (E) a-specific gene expression levels in a wild-type W. anomalus a
cells (MATa) compared with a cells with MATa2 deleted (MATa2 mata2-D),
measured by the NanoString nCounter system (24). For comparison, expression
levels of the a-specific gene STE3 and the haploid-specific gene STE4 are
also given. Means and SDs of two cultures per genotype, grown and tested in
parallel, are shown.
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the S. cerevisiae a-specific genes—are charac-
teristic of the W. anomalus clade rather than
of a single species (fig. S1D).
The observation that the W. anomalus

Mata2 protein acquired the necessary coding
changes to interact with Tup1 and Mcm1 but
could not bind to the S. cerevisiae a-specific
gene control region raised the question of
whether it has any role in regulating the a-
specific genes in W. anomalus. A series of
otherwise-isogenic strains was constructed
with Mata2 (and Mata2) deleted, and the
results show that, in this species, Mata2 does
not regulate the a-specific genes; they are
instead regulated by Mata2 (Fig. 2, C to E,
and fig. S3). Thus, despite the changes in
Mata2, W. anomalus retains the ancestral
form of a-specific gene regulation and activa-
tion byMata2. This conclusion is supported by
a bioinformatic analysis showing that the
a-specific genes possess Mata2-Mcm1, but

not Mata2-Mcm1 cis-regulatory sequences
(fig. S4B). These results argue against the
possibility that direct, a-specific gene repres-
sion by Mata2 existed in an ancestor of
W. anomalus but was subsequently lost, as
this would have required the independent
loss of Mata2 binding sites from all of the
a-specific genes across numerous species.
Our experiments up to this point demon-

strate that Mata2 had acquired the coding
changes needed to repress the a-specific genes
millions of years before its cis-regulatory se-
quences appeared in the a-specific genes.
We next addressed how these changes in
the Mata2 protein could have been main-
tained in the absence of their usefulness in
repressing the a-specific genes. One hypoth-
esis focuses on Mata2’s ancient function—
repressing the haploid-specific genes with
Mata1—and holds that the Mata2 coding
changes became required for this function

only in the W. anomalus clade. To test this
idea, we analyzed the requirements for haploid-
specific gene repression in W. anomalus. We
deleted MATa2 and MATa1 in a/a cells and
found that they are both necessary for haploid-
specific gene repression, a conclusion con-
firmed by chromatin immunoprecipitation
(Fig. 3A and figs. S5 and S6C). However,
unlike in species outside the W. anomalus
clade, the Tup1-interaction region and the
Mcm1-interaction region of Mata2 are nec-
essary for repression of the haploid-specific
genes within the clade (Fig. 2A and fig. S6B).
Finally, an Mcm1 cis-regulatory site is also re-
quired for the repression of the W. anomalus
haploid-specific gene RME1 (Fig. 3C and
fig. S6). Taken together, these experiments
show that Mata2, Mata1, and Mcm1 are all
required for haploid-specific gene repression
in W. anomalus, and that the portions of
Mata2 that interact with Mcm1 and Tup1 are
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Fig. 3. Mata1, Mata2, and
an Mcm1 cis-regulatory
sequence are all required
for haploid-specific gene
repression in W. anomalus.
(A) mRNA-seq of a wild-type
W. anomalus a/a cell
(MATa/MATa) compared with
an a/a cell with MATa2
deleted (MATa/MATa
mata2-D). The a-specific
genes are shown in green, the
haploid-specific genes in
orange, and the a-specific
genes in blue. Data from one
culture of each genotype
are plotted here, and data
from replicates, grown and
prepared in parallel, and
similar results obtained by
deleting Mata1 are shown in
fig. S5. (B) Diagram of the
sequence upstream of the RME1 coding sequence indicating presumptive Mata1-Mata2 (green) and Mcm1 (blue) binding sites. Arrow indicates the transcription start
site. (C) Expression levels of endogenous RME1 transcript (which serves as a control) and various PRME1-GFP reporter constructs in W. anomalus a and a/a cells
measured by reverse transcription quantitative polymerase chain reaction. Quantities are means and SDs of two cultures grown and measured in parallel,
normalized to expression of the housekeeping gene TBP1. Independent replicates are given in fig. S6.
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also required. This three-part recognition of
the haploid-specific genes in theW. anomalus
clade was not anticipated from studies of
other species. Even in the S. cerevisiae clade,
where Mcm1 and Mata2 are known to inter-
act, this interaction is not required for haploid-
specific gene repression (11). These results
explain the observation that the key changes
in Mata2 needed for the new a-specific gene
circuit were already in place in the last common
ancestor of S. cerevisiae andW. anomalus, long
before the circuit came into play (Fig. 4). An
alternative scenario—in which the Mata2 pro-
tein gained the Mcm1-interaction region twice,
once in the S. cerevisiae clade and once in the
W. anomalus clade—is unlikely because the
same seven amino acids would have had to be
gained in exactly the same position in the
protein (fig. S1).
This study helps to illuminate several long-

standing issues. First, how is pleiotropy avoided
when transcriptional regulators acquire
new functions? The modular structure of
Mata2 is evident from the protein domain
swap experiments (Fig. 2B and fig. S6B), show-
ing that the derived regions of the protein
(Tup1- and Mcm1-interaction regions) can be
transplanted to a variety of outgroup Mata2
proteins and that they endow the ancestral
proteins with the new functions without com-
promising the existing functions (11). How-
ever, there is a second, more subtle way that
extensive pleiotropy was avoided in the case
studied in this work. In the shift between the
different ways of controlling the haploid-
specific genes, pleiotropy was avoided auto-
matically; even before the new a-specific gene
circuit was formed, the Mata2-Mcm1 combi-
nation (which forms the basis of the new
circuit) had been “vetted” for millions of years
as being compatible with the ancestral func-
tion of Mata2.
Second, is the evolutionary pathway we de-

scribe in this paper compatible with the con-
cept of constructive neutral evolution, or the
idea that new functions can evolve through

evolutionary transitions of approximately equal
fitness (16–18)? Before the results presented
here were obtained, it was difficult to un-
derstand how the derived circuit represented
by S. cerevisiae (repression of the a-specific
genes by Mata2 in a cells) could have evolved
because it required changes in both theMata2
coding region and in the cis-regulatory se-
quences controlling the 5 to 10 a-specific
genes. We propose that the prior changes to
Mata2 represent an example of constructive
neutral evolution, in the sense that the neu-
tral sampling of different ways to repress the
haploid-specific genes over evolutionary time
led to changes inMata2 that, millions of years
later through exaptation, formed the basis of
the new circuit. Although we cannot rule out
the possibility that the differences in the way
that the haploid-specific genes were repressed
were somehow adaptive, it seems more likely
that they occurred neutrally—an explanation
consistent with a wide variety of theoretical
work (16–19). In any case, there is no obvious
adaptive explanation, and neutral evolution is
an appropriate default hypothesis.
Third, is there an inherent logic to the

mechanisms underlying a given transcription
circuit? In this paper, we show that some
clades regulate the haploid-specific genes
with a combination of three proteins, whereas
others use only two of the proteins, even though
the third is present. Nonetheless, the overall
pattern of haploid-specific gene expression
is the same. If there is any overriding design
logic to the different mechanisms of regulat-
ing these genes, it is difficult to discern (20).
More broadly, the work presented here illus-
trates that a given transcription circuit is best
understood as one of several possible inter-
changeable, mechanistic solutions rather than
as a finished, optimized design (21).
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